Artigo Técnico: Processo assistido por micro-ondas para desidratação de etanol a etileno

Referências bibliográficas

01 ESPACENET. Espacenet. Site European Patent Office, 2015. Disponível em: <www.epo.org>. Acesso em: 18 de  junho de 2015.

02 BARROCAS, H. V.; BARATELLI, F. J. Process for dehydration of a low molecular weight alcohol. 4396789 , 2nd August 1983.

03 MORSCHBACKER, A. L. R. D. C. Integrated process for the production of ethylene-butylene copolymer, an ethylene-butylene copolymer and the use of ethylene and 1-butylene, as comonomer, sourced from renewable natural raw materials. 8222354, 1st September 2011.

04 FAN, D.; DAI, D. J.; WU, H. S. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations. Materials, 6, 2013. 101-115.

05 ZHANG, M.; YU, Y. Dehydration of Ethanol to Ethylene. Industrial & Engineering Chemistry Research, 52, 2013. 9505-9514.

06 MAIA, G. S. S. Modelagem e simulação do processo de desidratação de etanol a eteno. Universidade Federal do Rio de Janeiro. Rio de Janeiro, p. 148. 2015. Dissertação de Mestrado.

07 MORSCHBACKER, A. Bio-Ethanol Based Ethylene. Journal of Macromolecular Science, 49, 2009. 79-84.

08 LIMA, A. M. de. Estudo Termodinâmico, cinético e otimização da produção de etileno a partir de etanol em alumina e óxido misto de cério-zircônio. Universidade Federal de Uberlândia. Minas Gerais, 2010. Dissertação de Mestrado.

09 TAKAHARA, I., SAITO, M., INAGA, M., MURATA, K. Dehydration of ethanol into ethylene over solid acid catalysts. Catalysis Letters, 105, 2005, 249-252.

10 GEDYE, R. et al. The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, v. 27, n. 3, p. 279-282, 1986.

11 GIGUERE, R. J. et al. Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters, v. 27, n. 41, p. 4945-4948, 1986.

12 ELSEVIER. Science Direct. Site do serviço Science Direct, 2015. Disponível em: <www.sciencedirect.com>. Acesso em: 22 de setembro de 2015.

13 KAPPE, O. C. Microwave Dielectric Heating in Synthetic Organic Chemistry. Chemical Society Reviews, n. 37, p. 1127-1139, March 2008.

14 LIDSTROM, P. et al. Microwave assisted organic synhtesis – a review. Tetrahedron, n. 57, p. 9225-9283, 29 August 2001.

15 LOUPY, A. Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. Comptes Rendus Chimie, n. 7, p. 103-112, October 2006.

16 STRAUSS, C. R. A Strategic, ‘Green’ Approach to Organic Chemistry with Microwave Assistance and Predictive Yield Optimization as Core, Enabling Technologies. Australian Journal of Chemistry, n. 62, p. 3-15, 2009.

17 GEDYE, R.; SHAW, M. Microwave Assisted Organic Synthesis Using Homogeneous and Heterogeneous Catalysts at Atmospheric Pressure. 33th Mic. Symp. Chicago: [s.n.]. July 1998.

18 CHEMAT, F.; DJENNIZ, C.; HAMADA, B. Atmospheric Pressure Microwave Assisted Heterogeneous Catalytic Reactions. Molecules, 12, 2007. 1399-1409.

19 SENISE, J. T.; JERMOLOVICIUS, A.; SANCHES, L. M. Alteration of Organic Equilibrium Kinetics by Continuous Processing Under Microwaves Irradiation. International Conference on Microwave Chemistry. Praga: [s.n.]. 1998.

20 SENISE, J. T.; JERMOLOVICIUS, L. A. Unsaturated Polyester Resin Production Process by Microwave Irradiation. 9303386, 16 August 1993.

21 SENISE, J. T.; JERMOLOVICIUS, L. A. Microwave Chemistry – A Fertile Field for Scientific Research and Industrial Applications. Journal of Microwaves and Optoelectronics, 3, n. 5, July 2004. 97-112.

22 METAXAS, A. C.; MEREDITH, R. J. Industrial Microwave Heating. London: Peter Peregrinus, 1983.

23 MALACZYNSKI, G. W.; DINATALE, C. A.; CINPINSKI, G. J. Volumetric Heating by Electromagnetic Energy Absorption. [S.l.]: GM Research, 1991.

24 BAGHURST, D. R.; MINGOS, P. M. Superheating Effects Associated with Microwave. Journal of the Chemical Society, Chemical Communications, 1992. 674-677.

25 FEHER, L. Hot Spot Formation and Development in Millimeter/Microwave. International Conference on Microwave Chemistry. Prague: [s.n.]. 1998.

26 BRECCIA, A.; GATTAVECHIA, E. New Chemistry by Microwave: Hot Spots Formation, Thermodynamic Behavior, Electron Sping Realigments. International Conference on Microwave Chemistry. Prague: [s.n.]. 1998.

27 BRECCIA, A. Some Thoughts Relating to the Mechanisms of Interaction of Microwave. Ampere Newsletter, July 1998.

28 ISAACS, N. Physical Organic Chemistry. Belfast: Longman, 1987. 96 p.

29 BRECCIA, A. et al. Chemical Radical Reactions Produced by Microwave Radiation. 7th International Conference on Microwave and High Frequency Heating. Valencia: [s.n.]. 1999. p. 279-282.

30 SMITH, M. B. March’s Advanced Organic Chemistry. 7th. ed. New Jersey: Wiley, 2013.

31 SENISE, T. J. et al. Enhancing Microwave Aspirin Synthesis by Changing Kinetics Parameters. 15th International Conference on Microwave and High Frequency Heating. Kraków, Poland: AMPERE. 14-17 September 2015.

32 SENISE, T. J. et al. Fast-tracking Biodiesel Production with Microwave Irradiated Reactor. 31st Internationa Exhibition-Congress on Chemical Engineering Environmental Protection and Biotechnology. Frankfurt, Germany: ACHEMA. 15-19 June 2015.

33 SENISE, T. J. et al. Hidrólise ácida de bagaço de cana de açúcar incentivada por micro-ondas nas frequências de 2,45 GHz e 5,8 GHz. 52.º Congresso Brasileiro de Química. Recife, Brasil: Associação Brasileira de Química. 14 -18 outubro 2012.

Página anterior 1 2 3 4 5 6 7Próxima página

Deixe um comentário

O seu endereço de e-mail não será publicado.

Adblock detectado

Por favor, considere apoiar-nos, desativando o seu bloqueador de anúncios